תאי גזע

דיון מתוך פורום  המטולוגיה

01/03/2001 | 04:36 | מאת: שוש

שלום רב האם יש אפשרות של שימוש בנושא של תאי גזע ב aml אצל ילדים האם תוכל לפרט יותר אודות נושא תאי גזע והאם בארץ יש נסיון בתחום זה

לקריאה נוספת והעמקה
01/03/2001 | 07:21 | מאת: תשובת מנהל הפורום

למה את מתכוונת במונח תאי גזע ? האם לתאי אב המטופויטיים ? (מה שנקרא בלועזית stem cells ?). איני עוסק בהמטולוגית ילדים. זה תחום נפרד הקשור לאונקולוגית ילדים/רפואת ילדים, אבל אציין מספר דברים: AML בילדים אינה מחלה שכיחה. גם בילדים ניתן להשתיל תאי אב המטופויטיים ממקור עצמי או מתורם. השאלה הנשאלת בד"כ היא מתי לבצע השתלה כזו, באיזה שלב של המחלה מבחינת הפוגה (ראשונה ? שניה וכיו"ב). בארץ מבצעים השתלות מח עצם גם בילדים. אינני יודע מה המדיניות הטיפולית הספציפית בחולי AML ילדים, אבל אני מצרף קישור לאתר המחלקה ההמטו-אונקולוגית במרכז שניידר לרפואת ילדים: http://www.scmci.org.il/dept/hematol.htm יש המטואונקולוגיה פדיאטרית גם בהדסה עין כרם ויש בה גם מיטות עבור ילדים שעוברים השתלות, כך שגם שם מתבצעות השתלות מח עצם בילדים: http://www.hadassah.org.il/departments/06bonemarrow.html גם ברמב"ם חיפה מתבצעות השתלות מח עצם לילדים: http://www.rambam.org.il/ped/oncl_abt.htm יתכן שגם בבתי חולים אחרים מבצעים השתלות מח עצם בילדים (חיפשתי גם במרכז רפואי ת"א - אבל האתר של המטואונקולוגיה פדיאטרית עדיין בהקמה). גם בסורוקה אין מידע עדיין ברשת וגם האתר של בי"ח תל השומר לא מגיב כרגע. להלן מאמרים המדברים על השתלה של תאי אב המטופויטים בילדים: א. Med Pediatr Oncol 2000 Oct;35(4):403-9 Hematopoietic stem cell transplantation (HSCT) with a conditioning regimen of busulfan, cyclophosphamide, and etoposide for children with acute myelogenous leukemia (AML): a phase I study of the Pediatric Blood and Marrow Transplant Consortium. Sandler ES, Hagg R, Coppes MJ, Mustafa MM, Gamis A, Kamani N, Wall D UT Southwestern Medical School and Children's Hospital of Dallas, Dallas, Texas, USA. [email protected] BACKGROUND: Hematopoietic stem cell transplantation (HSCT) is an important treatment modality for children with AML. The optimal conditioning regimen is unknown. The aim of this study was to determine the appropriate dosing of etoposide in combination with busulfan and cyclophosphamide in this setting. PROCEDURE: Twenty patients with a diagnosis of AML in first or second remission, or myelodysplasia scheduled for bone marrow transplantation, were included in this study. Patients received busulfan 640 mg/m(2) in 16 doses, cyclophosphamide 120 to 150 mg/kg in two doses, and etoposide from 40-60 mg/kg as a single dose. Extensive toxicity data was collected. RESULTS: Nineteen patients were evaluable for toxicity. Mucositis was seen in all patients. Four patients developed bacteremia and one patient died from overwhelming sepsis on day +3. Four patients developed moderate to severe skin toxicity. The major dose-limiting +3 toxicity was hepatic toxicity, which occurred in 14 of 19 patients. Eight patients developed clinical veno-occlusive disease, including three patients at dose level 4, two of whom had life-threatening disease. This hepatic toxicity defined the MTD of 640 mg/m(2) busulfan, 120 mg/kg of cyclophosphamide, and 60 mg/kg of etoposide. Overall, 9 of 20 patients enrolled in the study survive in remission, 8/14 allogeneic (median follow-up 44 months), and one of six autologous patients (follow-up, 54 months). CONCLUSIONS: We conclude that the combination of busulfan, cyclophosphamide, and etoposide at the doses defined above has activity in the treatment of children with high-risk AML/MDS undergoing allogeneic HSCT. Whether it offers an advantage over other conditioning regimens will require a randomized trial with a larger cohort of patients. Publication Types: ב. S Afr Med J 2000 Aug;90(8):804-11 The Cape Town experience with haematopoietic stem cell transplantation: the paediatric programme. Roux P, Novitzky N University of Cape Town Leukaemia Centre, Groote Schuur Hospital, Cape Town. OBJECTIVE: To determine the outcome of children with blood malignancies and bone marrow failure syndromes treated by paediatricians in the context of an adult haematopoietic transplantation programme. DESIGN: Retrospective chart review. SETTING: Hospital wards in a provincial tertiary institution in the Western Cape (Department of Haematology, Groote Schuur Hospital). SUBJECTS: Twenty-eight hospitalised children with haematological malignancies (acute lymphoblastic leukaemia (ALL) N = 4, acute myeloblastic leukaemia (AML) N = 13), or bone marrow failure syndromes (N = 11), who consecutively received autologous or allogeneic marrow grafts from HLA-identical siblings. OUTCOME MEASURES: Children (younger than 18 years) received allogeneic or autologous stem cell transplants. In the former group, two forms of graft-versus-host disease (GVHD) prophylaxis were used. Conditioning with radiation-containing regimens was followed by stem cell product infusion after T-cell depletion (CAMPATH 1, ex vivo immunoglobulin G (IgG); rat anti CD52). Children with malignancies who received unfractionated grafts were myeloablated, mainly with busulfan 16 mg/kg and cyclophosphamide 120 mg/kg. Those affected by marrow failure were prepared with cyclophosphamide and antilymphocyte globulin. Median age at time of transplantation was 116 months (range 18-212 months). The main cause of death was disease recurrence (N = 5) and GVHD (N = 3). Twenty-one children survived, 11 of 16 in complete remission (CR) from malignancy. Nine of the eleven patients presenting with marrow failure and 1 patient with severe combined immunodeficiency (SCID) remained disease free at a median follow-up of 934 days (range 70-2,330 days). Significantly longer disease-free (P = 0.03) and overall survival (P = 0.05, Cox Mantel test) was experienced by those who received T-cell-depleted stem cell grafts. CONCLUSIONS: The strategy of T-cell depletion of bone marrow/blood stem cells from HLA-matched siblings for transplantation into children with blood disorders has been successful and cost effective. These favourable results are the consequence of rational co-operation between adult and paediatric transplant physicians. ג. מאמר סקירה - השתלות בילדים ומבוגרים http://www.hematology.org/education/hema99/gorin.pdf ד. Leukemia 2000 Jul;14(7):1201-7 Prognostic factors in children and adolescents with acute myeloid leukemia (excluding children with Down syndrome and acute promyelocytic leukemia): univariate and recursive partitioning analysis of patients treated on Pediatric Oncology Group (POG) Study 8821. Chang M, Raimondi SC, Ravindranath Y, Carroll AJ, Camitta B, Gresik MV, Steuber CP, Weinstein H Pediatric Oncology Group Statistical Office, University of Florida, Gainesville, USA. The purpose of the paper was to define clinical or biological features associated with the risk for treatment failure for children with acute myeloid leukemia. Data from 560 children and adolescents with newly diagnosed acute myeloid leukemia who entered the Pediatric Oncology Group Study 8821 from June 1988 to March 1993 were analyzed by univariate and recursive partitioning methods. Children with Down syndrome or acute promyelocytic leukemia were excluded from the study. Factors examined included age, number of leukocytes, sex, FAB morphologic subtype, cytogenetic findings, and extramedullary disease at the time of diagnosis. The overall event-free survival (EFS) rate at 4 years was 32.7% (s.e. = 2.2%). Age > or =2 years, fewer than 50 x 10(9)/I leukocytes, and t(8;21) or inv(16), and normal chromosomes were associated with higher rates of EFS (P value = 0.003, 0.049, 0.0003, 0.031, respectively), whereas the M5 subtype of AML (P value = 0.0003) and chromosome abnormalities other than t(8;21) and inv(16) were associated with lower rates of EFS (P value = 0.0001). Recursive partitioning analysis defined three groups of patients with widely varied prognoses: female patients with t(8;21), inv(16), or a normal karyotype (n = 89) had the best prognosis (4-year EFS = 55.1%, s.e. = 5.7%); male patients with t(8;21), inv(16) or normal chromosomes (n = 106) had an intermediate prognosis (4-year EFS = 38.1%, s.e. = 5.3%); patients with chromosome abnormalities other than t(8;21) and inv(16) (n = 233) had the worst prognosis (4-year EFS = 27.0%, s.e. = 3.2%). One hundred and thirty-two patients (24%) could not be grouped because of missing cytogenetic data, mainly due to inadequate marrow samples. The results suggest that pediatric patients with acute myeloid leukemia can be categorized into three potential risk groups for prognosis and that differences in sex and chromosomal abnormalities are associated with differences in estimates of EFS. These results are tentative and must be confirmed by a large prospective clinical trial.

מנהל פורום המטולוגיה